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Abstract
α-Synuclein is a 140-amino acid protein produced predominantly by neurons in the brain which plays a role in the regulation of
neurotransmitter release, synaptic function, and plasticity, thus making it the focus in understanding the etiology of a group of
neurodegenerative diseases. We conducted genome-wide association studies (GWAS) of α-synuclein levels in cerebrospinal
fluid (CSF) with 209 non-Hispanic white participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI-1) cohort
using a linear regression model to identify novel variants associated with α-synuclein concentration. The minor allele (T) of
rs7072338 in the long intergenic non-protein coding RNA 1515 (LINC01515) and the minor allele (T) of rs17794023 in
clusterin-associated protein 1 (CLUAP1) were associated with higher CSF α-synuclein levels at genome-wide significance
(P = 4.167 × 10–9 and 9.56 × 10–9, respectively). In addition, single nucleotide polymorphisms (SNPs) near amyloid beta pre-
cursor protein (APP) (rs1394839) (P = 2.31 × 10–7), Rap guanine nucleotide exchange factor 1 (RAPGEF1) (rs10901091) (P =
8.07 × 10–7), and two intergenic loci on chromosome 2 and 14 (rs11687064 P = 2.50 × 10–7and rs7147386 P = 4.05 × 10–7) were
identified as suggestive loci associatedwith CSFα-synuclein levels.We have identified significantly associated SNPs for CSFα-
synuclein. These associations have important implications for a better understanding of α-synuclein regulation and allow
researchers to further explore the relationships between these SNPs and α-synuclein-related neurodegenerative disorders.
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Introduction

From the time of its discovery, α-synuclein, a 140-amino acid
protein produced predominantly by neurons in the brain, has
been the focus in understanding the etiology of a group of neu-
rodegenerative diseases called α-synucleinopathies. These in-
clude Parkinson’s disease (PD), dementia with Lewy bodies
(DLB) (Spillantini et al. 1997) and multiple system atrophy
(MSA) (Gai et al. 1998). Moreover, α-synuclein regulates the
fibrilization of both amyloid-β (Aβ) and tau, two key proteins in
Alzheimer’s disease (AD) pathophysiology (Bachhuber et al.
2015; Giasson et al. 2003; Guo et al. 2013; Masliah et al.
2001; Yoshimoto et al. 1995), which suggests an important role
forα-synuclein toxicity in neurodegeneration. The quantification
of α-synuclein in CSF is in parallel with the measurement of
proteins in CSF related to AD, namely total and phosphorylated
tau protein and β-amyloid. Therefore, α-synuclein has gained
much attention as a potential biomarker of α-synuclein-related
neurodegenerative disorders in recent years. α-Synuclein was
thought at first to be an exclusively intracellular protein and this
notion was challengedwhenα-synuclein was detected in biolog-
ical fluids, such as CSF (El-Agnaf et al. 2003; Mollenhauer et al.
2008). A number of studies have evaluated the potential of CSF
α-synuclein as a diagnostic biomarker for α-synucleinopathies,
but the results were inconsistent (Hong et al. 2010; Korff et al.
2013;Mollenhauer et al. 2008, 2010; Shi et al. 2011; Toledo et al.
2013; Wang et al. 2012). In general, patients with
synucleinopathies, e.g., PD, DLB, and MSA often have reduced
CSF α-synuclein compared to controls, while in AD patients,
CSF α-synuclein levels were often higher as compared with
cognitively healthy controls. Although the normal function of
α-synuclein remains unclear, studies suggest that α-synuclein
has a role in the regulation of neurotransmitter release, synaptic
function, and plasticity (Lashuel et al. 2013). A pathological role
for α-synuclein in these diseases is further supported by various
genetic evidences. Multiplication of the gene encoding α-
synuclein (SNCA) and six missense mutations ((A30P, E46K,
H50Q, G51D, A53E, and A53T) in this gene are identified to be
associated with dominant familial Parkinsonism (Appel-
Cresswell et al. 2013; Kruger et al. 1998; Lesage et al. 2013;
Pasanen et al. 2014; Polymeropoulos et al. 1997; Proukakis et al.
2013; Zarranz et al. 2004). In addition, multiple genome-wide
association studies (GWAS) have identified SNPs in SNCA as
major risk factors for sporadic PD (Simon-Sanchez et al. 2009).
Nevertheless, the molecular mechanisms by which α-synuclein
aggregation contributes to neurodegeneration remain unclear.

The use of quantitative traits in GWAS has been shown to
increase statistical power over case-control designs (Cruchaga
et al. 2013; Kim et al. 2011). Here, on the basis of adequate
evidence on the role of CSFα-synuclein in neurodegenerative
disorders, we conducted a GWAS of CSF from ADNI data-
base. Further examinations of the variants that we have iden-
tified in different datasets may lead to a deeper understanding

of α-synuclein regulation and provide important insights into
its effects on α-synuclein-related function and disorders.

Methods

ADNI Study Design

Data used in this study were obtained from the ADNI database
(http://adni.loni.usc.edu). The most recent information from
the ADNI is available online (http://www.adni-info.org). The
ADNI is a large, multicenter, longitudinal neuroimaging
study, launched in 2003 by the National Institute on Aging,
the National Institute of Biomedical Imaging and
Bioengineering, the Food and Drug Administration, private
pharmaceutical companies, and nonprofit organizations. The
study gathered and analyzed thousands of brain scans, genetic
profiles, and biomarkers in blood and cerebrospinal fluid. This
study was approved by institutional review boards of all
participating institutions and written informed consent was
obtained from all participants or authorized representatives.

Participants and CSF Measurement

Our study population consisted of all CN, MCI, and AD de-
mentia group participants from the ADNI-1. In this study, 686
(CN = 194, MCI = 330, AD = 160 at baseline) non-Hispanic
Caucasian individuals from the ADNI cohort whose data met
all quality control criteria were included, which would reduce
the likelihood of population stratification effects in the GWAS.

CSF samples were collected from individuals in the
Alzheimer’s Disease Neuroimaging Initiative (ADNI).
Levels of CSF α-synuclein concentration were measured
using LuminexMicroPlex (Luminex Corp, Austin, TX). The
α-synuclein Luminex assay demonstrated low day-to-day as
well as plate-to-plate signal variability. The accuracy for the
assay, as determined by recovery of spiked α-synuclein, was
~ 93%(Toledo et al. 2013).

Genotyping and Quality Control in GWAS

The ADNI samples were genotyped with the Illumina 610 chip.
Given the smaller size of the current sample as compared to
previous analyses, several quality control measures were applied
to the 620,901 SNPs to detect potential biases in genotyping using
the PLINK software package. Only SNPs with a minor allele
frequency (MAF) > 5%, call rates > 98%, and Hardy-Weinberg
equilibrium P > 0.001 were retained for analysis. Finally, a max-
imum of 519,442 SNPs were retained after these procedures. On
the basis of data for all of these SNPs, we excluded 151 individ-
uals who had more than 5% missing genotypes within 757 sam-
ples. This more stringent threshold was chosen to reduce the
likelihood of false-positive results in the context ofmodest sample
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size. In order to decrease CSF contamination by RBC, a human
hemoglobin ELISA quantitation kit was used (https://ida.loni.usc.
edu/pages/access/studyData.jsp), which has sensitivity well
beyond the cut-off value of 1000 ng/ml (Hall et al. 2012). For this
reason, 326 samples were removed. In addition, we excluded 71
samples that were non-Hispanic Caucasians. Finally, 209 individ-
uals with CSF α-synuclein were retained at last.

Statistical Analyses

The distribution of α-synuclein levels were approximately con-
sidered as normal distribution after log transformation. One-way
ANOVA models were used for quantitative normally distributed
variables. Rank-based two-way methods were used for non-
normally distributed quantitative variables (Toledo et al. 2013).
Chi-square text was applied to categorical data (Wang et al. 2016).
To examine the main effect of each SNP on the CSF α-synuclein
biomarker, GWAS was performed with additive genetic model.
We used a multiple linear regression model to estimate possible
correlation between genotypes and CSF α-synuclein concentra-
tion (e.g., dose-dependent effect of the minor allele). Covariates
such as age, gender, APOE ε4 status, educational level, and base-
line disease status were considered and retained in the final
models if P< 0.05. We focused on SNPs with uncorrected P<
5 × 10−8 (or Bonferroni correction correct P< 0.01) as genome-
wide significant and secondarily examined SNPs with P values
less than 1 × 10−5 to identify potential candidates (Risch and
Merikangas 1996). All statistical analyses were performed by R
3.4.0 and PLINK (http://pngu.mgh.harvard.edu/wpurcell/plink/).

Results

Demographic Characteristic and CSF α-Synuclein
Concentration

The detailed demographics of 209 (CN = 59, MCI = 101,
AD = 49 at baseline) non-Hispanic Caucasian participants at
baseline diagnosis were summarized in Table 1. No difference

was found across the diagnostic groups for age, education, and
sex (P > 0.05). Compared to CN and MCI subjects, AD indi-
viduals have higher CSF α-synuclein concentration, higher
frequency of APOE ε4 allele, and worst cognitive function
displayed by neuropsychological scales (MMSE and CDR-
SB) (P < 0.05). In addition, associations were detected be-
tween baseline demographics (e.g., APOE ε4 status, disease
status, and educational years) and CSF α-synuclein level (P <
0.05), which were considered as the evidence of covariates.

Loci Associated with CSF α-Synuclein Levels

Relationships between 519,442 SNPs and CSF α-synuclein
levels were shown in a Manhattan plot, with APOE ε4 status,
disease status, and educational years included as covariates
(Fig. 1). The obtained genomic inflation factors of CSF bio-
marker associations (λ = 1.00) indicated a low risk of confound-
ing due to population stratification. Six SNPs in the regions of
long intergenic non-protein coding RNA 1515 (LINC01515)
and clusterin-associated protein 1 (CLUAP1) reached
genome-wide significance (unadjusted P < 10−7, adjusted P <
0.01). In addition, SNPs near APP (rs1394839) (P = 2.31 ×
10−7), RAPGEF1 (rs10901091) (P = 8.07 × 10−7), and two
intergenic loci on chromosome 2 and 14 (rs11687064 P =
2.50 × 10−7 and rs7147386 P = 4.05 × 10−7) were identified as
suggestive loci associated with CSF α-synuclein levels (Table
2). All the annotation information of SNPs that did not reach
genome-wide significance or uncorrected P values less than
10−5 were listed in Supplementary Table 1.

Among all the SNPs, rs7072338, which is located in the
intron region of LINC01515 on chromosome 10, showed the
strongest association with CSF α-synuclein (uncorrected P =
4.167 × 10−9, Bonferroni corrected P = 2.164 × 10−3). Another
four SNPs located near rs7072338 also reached a GWAS sig-
nificant P value (uncorrected P = 1.909 × 10−8, Bonferroni
corrected P = 9.917 × 10−3). Besides that, three SNPs around
rs7072338 showed a P value lower than 10–5(Supplementary
Table 1). We confirmed the most significant SNP in this locus
and other seven SNPs in linkage disequilibrium (LD, r2 > 0.8)

Table 1 Demographic
information of cohort for GWAS CN (n = 59) MCI (n = 101) AD (n = 49) P value

Age (mean ± SD) 76.12 ± 4.64 74.23 ± 7.63 74.16 ± 8.63 0.384

Education (mean ± SD) 16.32 ± 2.47 15.69 ± 3.16 15.12 ± 3.33 0.2924

Sex (male/female) 32/27 68/33 23/26 0.1022

MMSE 29.24 ± 0.86 26.83 ± 1.74 23.59 ± 1.84 < 0.01

CDR-SB 0.02 ± 0.09 1.58 ± 0.84 4.37 ± 1.43 < 0.01

APOE ε4 (0/1/2) 45/12/2 44/47/10 17/20/12 < 0.01

α-Synuclein (ng/ml) (mean ± SD) 0.50 ± 0.33 0.52 ± 0.20 0.65 ± 0.45 < 0.01

P values are from the Kruskal-Wallis test or Fisher exact test

AD Alzheimer disease,MCI mild cognitive impairment, CN cognition normal, ALL total subjects,MMSEMini-
Mental State Exam, CDR-SB Clinical Dementia Rating Sum of Boxes
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(Fig. 2a). However, after controlling for rs7072338 genotype,
no SNPs in this region showed an association with CSF α-
synuclein levels indicating that all the association in this locus
was driven by rs7072338 (Fig. 2b). In addition, the linkage
disequilibrium (LD) pattern between rs7072338 and nearby
SNPs was almost identical in the ADNI cohort compared with
1000 Genomes European subjects (Supplementary Fig. 1), sug-
gesting that the SNP genotypes from this study were accurate.
The minor allele (T) of rs7072338 was associated with higher
CSF α-synuclein levels in a dose-dependent effect within both
combined groups and each diagnostic group (normal group, p =
5.14 × 10–5; pMCI group, p = 3.77 × 10–3; sMCI group, P =
0.034 and AD group, P = 8.56 × 10–4) (Supplementary Fig. 2).

Moreover, rs17794023, located in CLUAP1, also showed a
genome-wide significant association with CSF α-synuclein
levels (P = 9.56 × 10−9). This locus survived even after
Bonferroni corrections for multiple testing (Bonferroni
corrected P = 4.964 × 10–3). The minor allele (T) of
rs17794023 was associated with higher CSF α-synuclein
levels in a dose-dependent effect within both combined

groups and each diagnostic group (normal group, P = 2.81 ×
10–3; pMCI group, P = 3.32 × 10–3; sMCI group, p = 0.56 and
AD group, p = 3.14 × 10–5) (Supplementary Fig. 3).

Discussion

To our knowledge, we firstly performed a GWAS of CSF α-
synuclein levels in the ADNI cohort. Six SNPs in the regions
of LINC01515 and CLUAP1 were identified to be genome-
wide significant loci associated with CSF α-synuclein levels.
Among them, the significant association of SNPs in
LINC01515 was driven by rs7072338. Ultimately, we detect-
ed two SNPs (LINC01515 (rs7072338) and CLUAP1
(rs17794023)) are associated with CSF α-synuclein levels.
Moreover, SNPs near APP (rs1394839), RAPGEF1
(rs10901091), and two intergenic loci on chromosome 2
and 14 (rs11687064 and rs7147386) were identified as sug-
gestive loci associated with CSF α-synuclein levels. Function
of LINC01515 has never been explored yet, while CLUAP1

Table 2 Association results for CSF α-synuclein in ADNI

CHR SNP BP A1 MAF Closest.Gene SNP.Type BETA P

10 rs7072338 67,188,144 T 0.06516 LINC01515 Intron variant 0.4461 4.17 × 10–9

16 rs17794023 3,524,180 T 0.0754 CLUAP1 Intron variant 0.3193 9.56 × 10–9

10 rs10762004 67,149,453 T 0.05812 LINC01515 Intron variant 0.4406 1.91 × 10–8

10 rs10996614 67,158,548 C 0.05284 LINC01515 Intron variant 0.4406 1.91 × 10–8

10 rs7085632 67,166,307 G 0.06011 LINC01515 Intron variant 0.4406 1.91 × 10–8

10 rs7086079 67,166,620 G 0.05232 LINC01515 Intron variant 0.4406 1.91 × 10–8

21 rs1394839 26,136,162 G 0.1691 APP − 38,570 bp 0.2238 2.31 × 10–7

2 rs11687064 76,272,974 G 0.08124 Unknown Intergenic 0.3049 2.50 × 10–7

14 rs7147386 47,938,231 A 0.06275 Unknown Intergenic 0.325 4.05 × 10–7

9 rs10901091 133,634,029 G 0.06473 RAPGEF1 + 28,747 bp 0.2749 8.07 × 10–7

CHR chromosome, SNP single nucleotide polymorphism, BP base pair location in release 19, build 135 of the human genome in the dbSNP database, A1
the minor allele, MAF minor allele frequency in ADNI, SNP.Type type of SNP, BETA change CSF α-synuclein per copy of the minor allele, in which
positive numbers indicate more rapid decline and negative numbers indicate slower decline, P relationship between SNPs and CSF α-synuclein using
multiple linear regression model adjusted for educational years, APOE ε4 status, and baseline disease status

Fig. 1 Manhattan plot for the
GWAS of CSF α-synuclein
biomark. Observed − log10 P
values (y-axis) are displayed for
all tested SNPs on each autosomal
chromosome (x-axis). The red
horizontal line at 10−7 indicates
genome-wide significance
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appears to be involved in AD-linked cognitive deterioration
as a consequence of their interactions with Aβs (Armato et al.
2013). Previous studies indicated that CLUAP1 is involved in
ciliogenesis and impacts cognitive deterioration in AD as a
consequence of the neurogenesis process occurring in the
hippocampus (Armato et al. 2013; Botilde et al. 2013).
Besides causing cognition impairment, missense mutation in
the CLUAP1 gene was also found to modify the age of onset
in PSEN1 E280A AD (Velez et al. 2016). Beyond that,
CLUAP1 plays an important role in carcinogenesis of multi-
ple types of tumors such as osteosarcomas, ovarian, colon,
and lung cancers and may be useful as a tumor-associated
antigen or a novel therapeutic intervention for treatment in
multiple malignancies (Ishikura et al. 2007; Takahashi et al.
2004). Interestingly, our analysis identified one SNP near

APP gene as a suggestive locus. Mutations in APP that in-
crease production of APP-derived Aβ cause autosomal dom-
inant forms of familial AD (FAD) (Selkoe 2001). Aβ plaques
and α-synuclein-rich Lewy bodies are the major neuropatho-
logical hallmarks of Alzheimer’s disease (AD) and
Parkinson’s disease. Evidence from animal models shows
that Aβ may contribute to the development of Lewy body
diseases by promoting the aggregation of α-synuclein and
exacerbating α-synuclein-dependent neuronal pathologies
(Masliah et al. 2001). In addition, α-synuclein may lead to
inhibition of Aβ deposition and reduced plaque formation
(Bachhuber et al. 2015). The relationships between Aβ and
α-synuclein still need further research.

Rs7072338 and rs17794023 are intronic SNPs which can
affect protein structure by regulation of alternative splicing,

Fig. 2 a Regional association
results for the LINC01515 region
of chromosome 10 Fig. b
Association results for 10q21.3
controlling for rs7072338
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positive regulation of gene expression, and regulation of
nonsense-mediated decay (Jo and Choi 2015), and have even
been experimentally shown to affect transcription (Greenwood
and Kelsoe 2003). Therefore, they may play an important role
in α-synuclein levels. In fact, most of the SNPs detected by
traditional case-control GWASs have been mapped to intron
regions rather than exonic or nonsynonymous sites (Li et al.
2012; Welter et al. 2014). Investigation of the functional im-
plication of these intronic SNPs will thus be an important
research subject in the future. However, our data are not whole
exome or genome and full sequencing data within the region
may reveal other candidate causal variants. Further exploration
in larger populations will be necessary to assess whether and
how these SNPs contribute to α-synuclein-related functions
and disorders. In addition, participants included in our study
were AD oriented; according to the results of subgroup anal-
ysis, our findings could be generalized to cognitively normal
population. However, whether these findings could be gener-
alized to other populations (e.g., Parkinson disease) has never
been assessed and still needs further exploration.

Conclusion

We have identified an association between two genetic signif-
icant variants and four suggestive loci with CSF α-synuclein
levels. Our results have important implications for a better
understanding of α-synuclein regulation and allow re-
searchers to further explore the relationships between these
SNPs and α-synuclein-related neurodegenerative disorders.
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